An inversion formula for the attenuated X-ray transformation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Inversion Formula for Uniformly Attenuated Fan-Beam Projections

A convolution backprojection algorithm was derived by Tretiak and Metz to reconstruct two-dimensional (2-D) transaxial slices from uniformly attenuated parallel-beam projections. Using transformation of coordinates, this algorithm can be modified to obtain a formulation useful to reconstruct uniformly attenuated fan-beam projections. Unlike that for parallel-beam projections, this formulation d...

متن کامل

An alternative proof of Bukhgeim and Kazantsev's inversion formula for attenuated fan-beam projections.

An inversion formula was developed by Bukhgeim and Kazantsev for attenuated fan-beam projections [Russian Academy of Science Siberian Branch: The Sobolev Institute of Mathematics (2002)]. The inversion formula was obtained by relating the attenuated fan-beam projections to unattenuated fan-beam projections and by trickily processing the unattenuated fan-beam projections. We show in this paper t...

متن کامل

The Attenuated X-ray Transform: Recent Developments

We survey recent work on the attenuated x-ray transform, concentrating especially on the inversion formulas found in the last few years.

متن کامل

The Identification Problem for the Attenuated X-ray Transform

We study the problem of recovery both the attenuation a and the source f in the attenuated X-ray transform in the plane. We study the linearization as well. It turns out that there is a natural Hamiltonian flow that determines which singularities we can recover. If the perturbation δa is supported in a compact set that is non-trapping for that flow, then the problem is well posed. Otherwise, it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 2002

ISSN: 0004-2080

DOI: 10.1007/bf02384507